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Abstract. The magnetic dipole moment of the A(1232) is calculated in the framework of manifestly
Lorentz-invariant baryon chiral perturbation theory in combination with the extended on-mass-shell renor-
malization scheme. As in the case of the nucleon, at leading order both isoscalar and isovector anomalous
magnetic moments are given in terms of two low-energy constants. In contrast to the nucleon case, at
next-to-leading order the isoscalar anomalous magnetic moment receives a (real) loop contribution. More-
over, due to the unstable nature of the A(1232), at next-to-leading order the isovector anomalous magnetic
moment not only receives a real but also an imaginary loop contribution.

PACS. 12.39.Fe Chiral Lagrangians — 13.40.Em Electric and magnetic moments — 14.20.Gk Baryon

resonances with S =0

1 Introduction

The A(1232)-resonance is the most prominent and best-
studied nucleon resonance. It plays an important role in
the phenomenological description of low- and medium-
energy processes. This is due to the strong coupling of
the A(1232) to the 7N channel and the relatively small
mass difference between the nucleon and the A(1232). The
strong decay into a nucleon and a pion results in an ex-
tremely short lifetime and makes a precise determination
of such a fundamental physical quantity as the magnetic
dipole moment nontrivial. While the magnetic moments of
(almost) stable particles may be determined by means of
spin precession measurements, for unstable particles this
is not possible. Here, one has to resort to indirect mea-
surements making use of a superior physical reaction into
which the electromagnetic interaction of the particle in
question is embedded as a building block.

The magnetic moment of the AT%(1232) has been
investigated experimentally by measuring the 7Tp
bremsstrahlung reaction [1,2] which has been analyzed
within various theoretical frameworks [3-7]. The Par-
ticle Data Group only makes a rough estimate of the
range the moment is expected to lie within, yus++ =
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(3.7-7.5) un [8]', while SU(6) symmetry predicts for a
member of the decuplet with charge e the value p =
Qup (1p: proton magnetic moment) [9], resulting for the
AT in pa++ = 5.58 uy. The magnetic moment of the
A+ (1232) is accessed in the reaction yp — pr®y’ which
has been measured by the A2/TAPS Collaboration at
MAMI [10]. Using theoretical input based on the phe-
nomenological model of ref. [11] the extracted value reads
par = (27719 (stat.) & 1.5(syst.) +3(theor.)) pux [10] (see
also refs. [12-16] for additional theoretical approaches to
p — pr°y).

On the theoretical side, predictions for the delta mag-
netic moment have been obtained in various approaches
such as SU(6) symmetry [9], several quark models [17-28],
the Skyrme model [29], the 1/N,. expansion [30], lattice
QCD [31-33], QCD sum rules [34,35], heavy-baryon chi-
ral perturbation theory (HBChPT) [32,36,37], quenched
ChPT [38], and chiral effective field theory [16]. The aim
of this letter is to calculate the magnetic moment of
the A(1232) up to and including chiral order p3 in a
manifestly Lorentz-invariant formulation of baryon chi-
ral perturbation theory with explicit A degrees of free-
dom (AChPT) [39]%. Our approach differs from that of

1

un denotes the nuclear magneton e/(2m,).
2 Here, p stands for small parameters of the theory like the
pion mass and the A-nucleon mass difference.
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a previous manifestly Lorentz-invariant calculation [16]
in the structure of the effective Lagrangian, the power-
counting scheme, and the renormalization scheme. In
sect. 2 we introduce the relevant effective Lagrangian and
state the power counting. In sect. 3 we calculate the mag-
netic moment of the A(1232) at O(p?). Section 4 contains
a short summary.

2 Effective Lagrangian

The effective Lagrangian and the power counting relevant
to classifying the renormalized diagrams for the calcula-
tion of the magnetic moment of the A(1232) have been
discussed in ref. [39]. The non-resonant part of the ef-
fective Lagrangian is that of BChPT with only pion and
nucleon fields [40] (see, e.g., refs. [41] for an introduction).
All parameters and fields are considered as renormalized
quantities in the extended on-mass-shell (EOMS) renor-
malization scheme of ref. [42]. The effective Lagrangian
of the A(1232)-resonance [I(JF) = 2(37)] is formu-
lated in terms of vector-spinor isovector-isospinor Rarita-
Schwinger fields ¥, ; [43]. The most general Lagrangian
depends on a free “off-shell parameter” A [44]. Analyzing
the constraints required for obtaining the correct number
of physical degrees of freedom one finds that not all cou-
pling constants of the original most general Lagrangian
are independent [45]. The relations among the coupling
constants also involve the parameter A, however, in such
a way that the resulting effective Lagrangian is invariant
under the set of “point transformations” (see, refs. [39]
and [45] for further details). As a result of this invariance,
physical quantities do not depend on A and we are free to
choose a convenient value for A, say, A = —1.
For this choice of A, the leading-order Lagrangian
reads ‘
£y =3 At (1)

3
with the isospin projection operator 7 = d;; — +7;7; and

A = { (i) —ma) Guv — 1 (’V#Dl, + ’YVD;L)
+i ’7/,1«-@'711 +ma Yu Vv

9
+7 |:¢‘ Guv — YUy — UpYv + ’Y/J'Vi ’71/:| ’75}~ (2)

The covariant derivative of the delta field is defined as

(Dp)y,i = 0, Wy — 2i€ijil Py + W — v, ;

st (8, —irp)u +
(0, — il“)uT] = 71, 1. The pion fields are contained
in the unimodular unitary (2 x 2) matrix U with u? =
U. In case of the electromagnetic interaction, we insert
for the external fields r, = [, = —eZ.A, and v,(f) =
—5.A, [41], where e is the proton charge. The TAA in-
teraction is generated by the last term of eq. (2), where

and involves the connection I, =

uy, = iful (9, —ir,)u — u(9, —il,)ul] = Thu,, and g1
is the relevant coupling constant. Finally, m 5 stands for
the mass of the A. The leading-order 7NA interaction
Lagrangian reads

— 3
LBN= 9T £ (0" ="y )up ;¥ +hee,  (3)

where ¥ = (p,n)T denotes the nucleon field with two four-
component Dirac fields p and n describing the proton and
neutron, respectively, and g is a coupling constant. Finally,
for the calculations of this work it is sufficient to parame-
terize the photon-delta interaction Lagrangian at O(p?) as
ie

E(Az) = j’ugé

[N

{1+2 di+3 (1+g dg) 73] £2w, Fr

(4)
where FH” denotes the field-strength tensor and dj,
ds are coupling constants contributing to the magnetic
dipole moment of the A at the given order?.

The perturbative calculation of the dipole moment is
organized by applying the following power counting to the
renormalized diagrams. Interaction vertices obtained from
an O(p™) Lagrangian count as order p™, a pion propagator
as order p~2, a nucleon propagator as order p~!, and the
integration of a loop as order p*. In addition, we assign
the order p~! to the A propagator and the order p' to the
mass difference 6 = ma — m.

In a resonance generating channel, a A propagator
which is not involved in a loop integration has to be
dressed. One then has to re-sum the self-energy insertions
and to consider the dressed propagator as of the order
p~3, because the self-energy starts at O(p?).

QTTLA

3 Magnetic moment of the A(1232)

Unstable particles do not occur in the spectrum of asymp-
totic states of the theory. Therefore the standard definition
of the magnetic moment through the matrix element of the
current between asymptotic free states cannot be applied.
Instead one considers a complete physical scattering am-
plitude where the unstable particle contributes as an inter-
mediate state. One parameterizes the contribution of the
unstable particle and defines the magnetic moment such
that for the regime where the unstable particle turns into
a stable one (here ma < my + M) the magnetic moment
coincides with the standard one of the stable particle.

For example, for the AT (1232)-resonance one consid-
ers the physical process

TP =T+ (5)
In the A-resonance region, to leading orders (p=2, p=2,
p~ 1) in AChPT the contribution of the AT(1232) can be

3 The separation has been introduced for later convenience
so that the final expression of the magnetic moment in the
usual isospin basis is most simple.
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Fig. 1. vp — pr®y’ amplitude in the A(1232)-resonance re-
gion.

consistently separated. The contribution shown in fig. 1 is
symbolically of the form

Vs SO I 8PV (6)

where V#, I'” and V denote the YNA, yAA, and nAN
vertices, respectively, and S corresponds to the A prop-
agator. We parameterize the (most general) yAA vertex
I'” in terms of the Lorentz structures

I = gyl (0 p) + 0 Iy (0, p)vs + 05,15 (0 p)pp + -+ -

and expand around p? = m?, P = ma,p? = m?, P’ =
ma. Then, the only relevant contribution up to and in-
cluding the next-to-next-to-leading order reads*

Vs S g,5 I (0. p) Shev.

pr=m p=ma i =m i =ma
(7)

As a result of eq. (7), at leading orders (p~2, p=2, p~!)
one can consider the yAA vertex function with an “on-
mass-shell A” and parameterize

2

P+P)" o2
T oma G@Q)+--,

Q2 = _q2 ) (8)

where the complete on-shell vertex contains two additional
structures [46] which are, however, not related to the mag-
netic moment. We express the total magnetic moment as

Iy (p',p) =~"F(Q?) +

qu = (pl _p)y>

. ez
A=Q+nlg —95 (9)
where S is the spin, e@ is the charge, and ¢ = 2 (in
combination with k = 0) is the gyromagnetic ratio of a
particle that does not participate in the strong interac-
tions, neglecting also higher-order weak and electromag-
netic interactions [47]5. Here, we will only consider the
modification due to the strong interactions which are en-
coded in the anomalous magnetic moment x. The total
magnetic moment in units of e/(2ma) is given by F(0)
of eq. (8). Performing an isospin decomposition in the
isovector-isospinor representation as

Q) = 5FOQ) + omF Q)

4 Note that v*Sas(p) and p*Sas(p) are free of poles and
therefore generate only terms of higher order.

5 The use of minimal substitution only generates g = 2/3
instead of g = 2.
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Fig. 2. Contributions to the yAA vertex up to and including
Oo(p®).

one obtains for the isoscalar and isovector components of
the magnetic dipole moment

(5) = p(s) gy &
Ha ( ) 2mA7

e

) = F(0) (10)

2mA

The magnetic dipole moment of the physical degrees of
freedom is given by

1 S v
p= §N(A)+T3M(A)

1 s e
=3 [2 (1 Jrli(A)) + Ty (1+n2’))] .

(11)

where T3 stands for the third component of the isospin
operator in the usual four-dimensional representation.
Using the Lagrangians of sect. 2, we have calculated
the yAA vertex up to and including O(p?), where the rel-
evant diagrams are shown in fig. 2. Applying the EOMS
renormalization scheme [42]%, we obtain the following
renormalized expressions for the form factors F(*) and

5 The contribution of diagram (i) of fig. 2 to the magnetic
moment is of higher order.
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F®) at Q% =0:
FO(0) =3+ 3, + A% 4 0(pt),
F®)(0) = 3+ 3d, — —fﬁ?f
—% {4435 +3845 In (%)
438460 In (5 ]J\fﬂ + 119227:;2@
+O(p"), (12)

where ©® = +/—M?2+ 62, For the numerical analysis
we make use of ga = 1.267, F, = 92.4MeV, my =
my = 938.3MeV, M, = M+ = 139.6 MeV, and ma =
1210 MeV, where m 4 is the pole mass. For the A coupling
constants we take g = 1.127 as obtained from a fit to the
A — 7N decay width [39] and g1 = 9ga/5 from SU(6)
symmetry. We then obtain for £(*) and ()

K% = di +0.23+O(pY),

k) = dy —0.22 40037 + O(pY). (13)
Unfortunately, we do not have an estimate for the pa-
rameters d; and dy which reflect the contribution to the
anomalous magnetic moment of the A(1232) at tree level
[O(p?)]. However, we can compare the results of eq. (13)
with the anomalous magnetic moment of the nucleon [48]

Hg{j) = 2cym + O(p?),

2
v M
/ig\,) = 4dcgm — g;f;l 5

= 4cem — 1.96 + O(p*),  (14)
where cg and c; are parameters of the O(p?) 7N La-
grangian. There are two main differences between the
anomalous magnetic moments of the nucleon and of the
A(1232) up to the chiral order p3. First, pion loops do not

contribute to lﬁg\?)

to /@(AS) is 0.23. The loop contribution originates from the
renormalized diagram (e) of fig. 2. Second, due to the un-
stable nature of the A(1232), there is an imaginary part in
&(AU) which the nucleon does not have. The isovector loop
contribution is significantly smaller than in the case of the
nucleon.

Let us finally compare the results with previous EFT
calculations. As in the nucleon case, ChPT in the SU(2)
sector does not predict the anomalous magnetic moments
of the A(1232). In refs. [32,36,37] the decuplet magnetic
moments were calculated in the heavy-baryon framework.
Our calculation differs by the set of diagrams which con-
tibute at the given order, because we also include the
renormalized diagram (e) of fig. 2. The manifestly Lorentz-
invariant approach of ref. [16] uses a different power count-
ing and considers a different set of diagrams. A numeri-
cal comparison of the various EFT approaches would re-
quire knowledge of the low-energy coupling constants. Un-
fortunately, an estimate of these coupling constants does

at O(p?®), whereas the loop contribution

not exist yet. Finally, note that different renormalization
schemes result in different values for the low-energy con-
stants.

4 Summary

We have calculated the magnetic dipole moment of the
A(1232) up to and including order p? treating both the
pion mass and the A-nucleon mass difference as small
quantities of order p. For this purpose we have used the
manifestly Lorentz-invariant form of BChPT with explicit
A degrees of freedom [39] in combination with the EOMS
renormalization scheme [42]. This results in a consistent
effective field theory describing the correct number of
physical degrees of freedom in combination with a sys-
tematic power counting. The 1 AA interaction was chosen
to be consistent with a recent analysis of the structure of
constraints of ref. [45] for a spin-(3/2) system.

At next-to-leading order, O(p?), the isoscalar and
isovector anomalous magnetic moments are given in terms
of two low-energy constants. At next-to-next-to-leading
order the isoscalar anomalous magnetic moment receives
a real loop contribution of 0.18 in units of the nuclear
magneton. This has to be contrasted with the nucleon,
where the loop contribution to the isoscalar anomalous
magnetic moment is O(p?). At next-to-next-to-leading or-
der the isovector anomalous magnetic moment receives a
real loop contribution of —0.17 and an imaginary loop
contribution of 0.29 in units of px. The appearence of an
imaginary part in the yAA vertex function reflects the
unstable nature of the A(1232). Our results differ from
previous EFT approaches in the structure of the effective
Lagrangian, the power-counting scheme, and the renor-
malization scheme.

As a next step it would be desirable to have full
and consistent calculations of 7+p bremsstrahlung and
vp — pr®4’ in the A-resonance region. Such calculations
would have the potential of allowing for an extraction of
the parameters d; and ds from a fit to the experimen-
tal cross-sections and thus for obtaining a result for the
magnetic moments in a self-consistent framework.

We would like to thank Matthias R. Schindler for useful
comments on the manuscript. The work of J.G. has been
supported by the Deutsche Forschungsgemeinschaft (contract
SCHE 459/2-1).
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